
Proceedings on Privacy Enhancing Technologies ; 2022 (3):247–267

Amogh Pradeep*, Hira Javaid, Ryan Williams, Antoine Rault, David Choffnes, Stevens Le Blond,
and Bryan Ford

Moby: A Blackout-Resistant Anonymity
Network for Mobile Devices
Abstract: Internet blackouts are challenging environ-
ments for anonymity and censorship resistance. Exist-
ing popular anonymity networks (e.g., Freenet, I2P, Tor)
rely on Internet connectivity to function, making them
impracticable during such blackouts. In such a setting,
mobile ad-hoc networks can provide connectivity, but
prior communication protocols for ad-hoc networks are
not designed for anonymity and attack resilience. We
address this need by designing, implementing, and eval-
uating Moby, a blackout-resistant anonymity network
for mobile devices. Moby provides end-to-end encryp-
tion, forward secrecy and sender-receiver anonymity. It
features a bi-modal design of operation, using Internet
connectivity when available and ad-hoc networks dur-
ing blackouts. During periods of Internet connectivity,
Moby functions as a regular messaging application and
bootstraps information that is later used in the absence
of Internet connectivity to achieve secure anonymous
communications. Moby incorporates a model of trust
based on users’ contact lists, and a trust establishment
protocol that mitigates flooding attacks. We perform
an empirically informed simulation-based study based
on cellphone traces of 268,596 users over the span of a
week for a large cellular provider to determine Moby’s
feasibility and present our findings. Last, we implement
and evaluate the Moby client as an Android app.

Keywords: anonymity; privacy; anonymous messaging;
censorship; delay-tolerant networking; mobile networks

DOI 10.56553/popets-2022-0071
Received 2021-11-30; revised 2022-03-15; accepted 2022-03-16.

*Corresponding Author: Amogh Pradeep: Northeastern
University & EPFL, E-mail: amoghbl1@ccs.neu.edu
Hira Javaid: Northeastern University, E-mail:
hira@ccs.neu.edu
Ryan Williams: Northeastern University, E-mail:
williams.ry@husky.neu.edu
Antoine Rault: EPFL, E-mail: antoine.rault@epfl.ch
David Choffnes: Northeastern University, E-mail:
choffnes@ccs.neu.edu
Stevens Le Blond: EPFL, E-mail: stevens.leblond@epfl.ch
Bryan Ford: EPFL, E-mail: bryan.ford@epfl.ch

1 Introduction and Motivation
Internet blackouts have affected numerous countries
around the world. The causes of these blackouts vary:
natural disasters in Taiwan [30], cyber attacks in Ger-
many [31] and Liberia [37], and censorship cases such as
Ethiopia [6], Iraq [38], Syria [8], and India (in certain re-
gions) [20]. In this paper, we consider blackouts caused
by active adversaries who seek to disrupt freedom of
communication by attacking traditional forms of net-
work connectivity; such adversaries also attack alternate
(e.g., ad hoc) communication infrastructure used dur-
ing blackouts. The goal of this work is to provide secure,
DoS-attack-resistant communication between users in
blackout-affected regions.

Current metadata-private communication sys-
tems [14, 41] rely on the presence of a wide-area com-
munication channel, such as the Internet, to provide se-
cure communications. However, these systems are ren-
dered ineffective in environments where Internet out-
ages occur, as they rely on a wide-area channel to
function. Previous attempts at providing some form of
communications during blackouts include Rangzen [28],
Briar [11], and FireChat [32]. Rangzen provides a
sender-anonymous micro news service while Briar pro-
vides secure messaging capabilities. Both Rangzen and
Briar require that users physically meet to exchange in-
formation required to use the services, which is time
consuming and has typically failed in previous systems
that use this mechanism (e.g., PGP’s web-of-trust [44]).
Firechat has officially stated that “it was not meant for
secure or private communications" [45]. Thus, there re-
mains a need for a practical, secure communication sys-
tem that works in blackout environments.

We present Moby, a blackout-resistant anonymity
network for message communication via mobile devices.
Moby presents a novel protocol that provides end-to-end
encrypted messaging with forward secrecy and sender-
receiver anonymity. Moby uses a bi-modal design con-
sisting of a wide-area channel and an ad-hoc communi-
cation channel that are used in combination to provide
blackout-resistant communications. The wide-area, In-
ternet channel bootstraps the information necessary for



Moby 248

communication via the ad-hoc channel. As we expect
both wide-area and ad-hoc networks to be attacked dur-
ing blackouts, the Moby network protocol provides re-
sistance against network attacks. Specifically, the Moby
network protocol augments an Epidemic routing [42]
protocol by incorporating trust to provide DoS attack
resilience. Each client in the Moby network computes
trust for other participants of the network based on di-
rect communication and mutual communication part-
ners, and the client uses this information to make mes-
sage queuing and routing decisions. These two channels
combine to provide sender-receiver anonymous, end-to-
end encrypted, forward-secret messaging to its users.

To measure the effectiveness of Moby’s trust-based
routing protocol, in terms of message delivery rates
and message latencies, we perform an empirically in-
formed simulation-based study using anonymized call
data records from a large cellular provider’s network,
comprising 268,596 users in a large metropolitan area
for a typical work week.1 We run numerous simula-
tions while varying environmental settings to determine
the effectiveness of our protocol in different scenarios.
In the absence of an adversary, Moby’s, Epidemic, and
Firechat routing protocols each achieve 50.73% delivery
ratio; however in the face of a DoS attack, the deliv-
ery ratio for Epidemic/Firechat routing drops to 1.15%,
while Moby achieves 13.96%.

Finally, we present an implementation of the Moby
client as a modification of the Signal messaging appli-
cation. Moby can run on any messaging platform that
provides a secure channel; we chose Signal because it is
open source and widely used. To determine the feasibil-
ity of our client on mobile devices, we perform power
and processor utilization measurements.

Our main contributions are as follows:
– We present the design of Moby, the first blackout-

resistant network for message communication for mo-
bile devices using a bi-modal operation model.

– We present a trust establishment mechanism that de-
fends Moby against denial-of-service attacks.

– We provide a trace-driven evaluation of Moby’s per-
formance and robustness with large real-world data.

– We present an open-source implementation of Moby
and its performance in terms of energy consumption.

1 Use of such data was approved by our IRB.

Fig. 1. Overview of Moby’s bi-modal operation.

2 Goals and Assumptions

2.1 Goals and Non-Goal

Best-Effort Communication During a Blackout:
Moby aims to provide communication via short mes-
sages during blackouts, which we define to be peri-
ods when wide-area Internet connectivity is unavailable
(i.e., IP messages are not routed). Moby uses short-
range link layer technologies and promises best-effort
delivery of its network messages.
Secure, Anonymous and Decentralized: Moby
aims to provide confidential communication between a
pair of users while maintaining message integrity and
providing sender authentication. It also aims to make
communications forward-secret and anonymous in the
sense that, using a message, the associated sender or
receiver of that message cannot be identified. It aims
to provide these features without relying on a central
authority.
Attack-Resilient Communication: Moby aims to
provide attack-resilient communication during a black-
out. We consider an adversary whose goal is to disrupt
the Moby network (e.g., a DoS attacks, jamming, etc.).
Usability: Moby is designed to enable communication
for relatively nontechnical people. The Moby client is
implemented as an extension to an existing, popular,
secure messaging app to facilitate ease of use. With the
extension, the app supports both communication over
the Internet and via the Moby network .
Not Steganographic: Moby does not hide users con-
nected to its network. Hence, it is trivial to identify
network participants at a geographic location.

2.2 Assumptions

Secure Channel: We assume the existence of a se-
cure wide-area communication channel at some point
before a blackout. This channel ensures confidentiality,
integrity, replay protection, as well as mutual authenti-
cation between users. In our implementation, we use a
secure messaging application (Signal) run over the In-
ternet to provide this feature. This channel is used to



Moby 249

bootstrap information required for clients to function in
the absence of the wide-area communication medium.
Trust in Contacts: The Moby design uses a notion of
trust built on users’ contacts. We assume that a user
trusts contacts they communicate with frequently. In
our simulations, we take this to be the set of all users
stored as a contact in a client’s phonebook who have
been contacted more than a threshold number of times2,
under the assumption that such contacts are real peo-
ple and known to users (i.e., trusted at some level). In
practice, users can customize their lists of trusted con-
tacts to augment this heuristic with knowledge of who is
trustworthy. We further develop this notion of trust to
include pairs of users who have never directly communi-
cated, but who share a large portion of mutual contacts.

2.3 Threat Model

We present Moby’s threat model in this section using
terminology introduced by Diaz et al. [17] and later (§ 4)
show how we defend against it.
Inducing Blackouts: The adversary is global and ac-
tive for wide-area communication channels (e.g., IP-
based communication via cellular or WiFi networks).
Specifically, the adversary can induce blackouts of the
secure wide-area communication channel that is used
for communication in the absence of a blackout. These
blackouts could span a city, state, or even a country.

The adversary is local for the ad-hoc Moby network.
A global adversary for Moby network is impractical, as
it requires covering the entire geographic region with
short range radios. Thus, we omit such global attacks
from our threat model. Below we consider the active
and passive attacks this local adversary can mount.
Passive Monitoring: The local adversary can be pas-
sive and monitor a fraction of all Moby network traffic.
Introducing Malicious Messages: The local adver-
sary can actively introduce arbitrary messages into the
Moby network to attack the network. These messages
can be introduced at arbitrary locations to attempt
denial-of-service attacks on the network. Further, the
adversary can modify messages it observes and send
those modified messages into the network.
Active Jamming: The local adversary can actively
jam network connections. Recall that jamming the en-
tire network is not possible because the adversary is lo-

2 We use a threshold of one to get an upper bound on the im-
pact of trust in our simulation results, but this can be a user-
configurable parameter.

cal. Further, such global jamming would be impractical
given the geographic span of the network proposed.
User Coercion: The adversary can mount internal at-
tacks, but these are by definition local. In this case, the
adversary is active and launches network attacks from
existing members of the Moby networkṪhe adversary
can also launch passive monitoring attacks from such
compromised hosts, contributing a vantage point to the
passive monitoring mentioned above.

3 System Design
The Moby ecosystem is composed of several compo-
nents that combine to provide blackout-resistant com-
munication. Fig. 1 depicts the sequential operation of
Moby. The trust establishment protocol is performed
over a secure wide-area communication medium (step 1
in Fig. 1). In the case of a blackout (steps 2-4 in Fig. 1),
each Moby client participates in the Moby network (step
3 in Fig. 1) by relaying Moby messages. A client can
introduce messages into the Moby network (step 2 in
Fig. 1) and receive messages from it (step 4 in Fig. 1).
We refer to this property of using two communication
channels as bi-modal operation. A client can simultane-
ously participate in both these modes.

A Moby client, via the secure wide-area communi-
cation channel, establishes trust with other clients. Our
implementation of Moby does this with every contact
on its phonebook that also runs Moby. Clients update
their list of trusted clients based on the outcome of this
step, and use this list in the Moby network to decide
whether to hold or drop messages they receive.

The Moby network is a blackout-resistant
anonymity network. We expect Moby users to install
and use Moby as their default messaging application.
Moby clients utilize this network to originate, receive,
and relay Moby messages within it. During periods of
Internet connectivity, the Moby network ad-hoc net-
work can be used to provide sender-receiver anonymity,
a property absent from many widely used Internet mes-
saging applications. Moby builds trust scores between
communicating users as they exchange messages with
each other. During periods of Internet blackouts, the
Moby network is the only medium through which clients
can communicate. Moby provides best-effort delivery
during these blackouts and uses trust scores computed
earlier to prioritize messages.



Moby 250

3.1 Trust Establishment Protocol

The trust establishment protocol is performed by a pair
of Moby clients over a secure channel. Moby clients
bootstrap information for each other using this proto-
col. To participate in the Moby network, clients use
a list of trusted clients (referred to as a Trust List)
to decide whether a Moby message should be held or
dropped when received. Clients check this list to see if
they recognize the client that relayed the message, to
make that decision (§3.2.6). Clients use cryptographic
material that provides forward-secret, out-of-order resis-
tant, end-to-end encrypted messaging. A pair of clients
use this material to encrypt messages sent via the Moby
network. To satisfy these properties in our implementa-
tion, we use the Double Ratchet (DR) algorithm [40].
Signal’s [2] implementation of DR includes sender and
receiver identifiers in messages, we do not include these
identifiers in Moby to ensure sender-receiver anonymity
(further discussed in §3.1.2). A client uses a long-lived
signing key and a corresponding verification key to rec-
ognize clients in the Moby network (§3.2.4).

At the end of trust establishment both clients will
have: updated Trust Lists, cryptographic materials for
communication, and verification keys for each other.

The trust establishment protocol must run over a
pre-existing secure communication channel, regardless
of the medium of communication. Thus, it can run either
over the Internet, given an underlying channel (e.g., a
messaging application) that is secure, or manually when
two clients meet each other. Note, however, that the
Moby network should not be used as this secure chan-
nel. For a given pair of clients to communicate via the
Moby network, the trust establishment protocol must
be run at least once between them. In our implementa-
tion, this protocol is run against all contacts in a client’s
phone book on first installation of the application and
whenever a new contact is added on a given device.
It could be run more or less frequently, depending on
the deployment scenario. Trust scores computed do not
change during a blackout and should only be updated
once a secure channel for trust establishment is restored.

We now present each component in detail and how
they are used in Moby.

3.1.1 Trust in Moby

The concept of trust in Moby is realized by message
trust values and user trust lists.
Trust Value Calculation and Updates: A Moby
client computes the trust value associated to another
client on completing a Moby Handshake. Clients use in-

formation about how many contacts they share in com-
mon and how many times an opposite client is contacted
to calculate the trust value for that client. We describe
a general approach for computing trust, then provide
details of the specific formulation of trust value compu-
tation that we use in our system.

To compute a numeric trust value for a pair of
clients, we consider the following abstract function:

Trust Valueclient = f (contacts, communications) (1)

To extend a client’s trust list, we support the notion of
indirect trust that incorporates the notion of transitiv-
ity: if client A trusts client B, and client B trusts client
C, then client A trusts client C. In this example, A and
C are 1-hop trusted clients (assuming there is no direct
communication between A and C to otherwise establish
direct trust).

Each Moby message contains a trust value in it as
well. This value is first set by the sender and is updated
at each client that receives it and relays it in the Moby
network. Clients update this value based on who for-
wards the message. Thus, for a message:

Trust Valuemessage = f (old value, client value) (2)

In our implementation, we use binary trust: all con-
tacts are marked either trusted or untrusted. Similarly,
all messages are marked trusted or untrusted. We use
binary trust as it captures the upper bound that can be
achieved by other trust models for a given hop count. A
fine grained trust system could perform, at best, as well
as our binary model. These update operations therefore
tell us whether an opposite client is trusted and likewise
whether a message is trusted.

The binary trust system is one method of computing
trust values. It provides a coarse-grained model of trust
where entities are either trusted or untrusted. Compu-
tation of trust values are configurable; a real number
trust value that provides a fine-grained model of trust
could be used.
Trust Lists: A trust list is comprised of the following
information for each client that is trusted: unique con-
tact information, a verification key, a trust value, and a
hop value. The contact information is a unique identi-
fier for that client, e.g. username or phone number. The
verification key is a public key for the signing key used
by that client. The trust value is a numerical indicating
how much that client is trusted. The hop value is the
shortest distance to the client (e.g. if client A trusts B,
and B trusts C, then A has a hop count of 1 for C).

Each Moby client maintains an instance of a Trust
List; while participating in the Moby network, this list



Moby 251

is used to check whether an encountered client can be
trusted and to what extent. These trust lists are popu-
lated and updated during Moby Handshakes.

Trust lists could potentially be polluted with stale
contacts (i.e., ones in contact lists that are no longer
trusted). One mitigation is for Moby to use only con-
tacts that have been contacted recently. Setting proper
thresholds on recency, however, remains an open ques-
tion. As an example value, our evaluation assumes trust
only for contacts that have been communicated with
over the past year.

3.1.2 Cryptographic Material

To communicate via the Moby network, a pair of Moby
clients must share some cryptographic material. In our
implementation, we use the Double Ratchet (DR) algo-
rithm. DR is used with just the symmetric key ratchet
option which provides forward-secret, out-of-order resis-
tant end-to-end encryption. We drop the second ratchet
step as it provides break-in resistance (which is out-
side of our threat model) and requires messages between
clients to be reliably delivered (which the Moby network
cannot provide). To gain sender-receiver anonymity, we
drop all identifiers related to senders or receivers (we
provide a heuristic proof for this in Appendix A. By
doing so, it becomes computationally more expensive
to check message reception, but we are willing to trade
computation for security here. Although we use DR in
our implementation, any cipher that provides the same
guarantees could be used.

3.1.3 Moby Handshake

The Moby Handshake is a four-message protocol per-
formed by two Moby clients. We use the PSI-CA [15]
protocol, and exchange: verification keys, cryptographic
material, and trust lists, and establish trust between two
clients. We refer to the client that starts the protocol as
the initiator, and the opposite client the receiver.
Private Set Intersection Cardinality: PSI-CA is an
asymmetric 2-message protocol that computes, for the
initiator, the cardinality of set intersection for two sets,
while keeping the contents of the sets hidden from ei-
ther party. A pair of Moby clients use PSI-CA twice in
the handshake to compute the overlap of trusted con-
tacts (using verification key fingerprints as input to the
protocol) without revealing the fingerprints.
Handshake Steps: Fig. 2 illustrates the PSI-CA hand-
shake steps. The initiator starts the PSI-CA protocol
with the Hello message and receives a Hello Response
from the receiver. This concludes one round of PSI-CA

Fig. 2. Messages in one round of the Moby handshake.

and starts the second round. Using the receiver ’s mes-
sage, the initiator computes the overlap of trusted con-
tacts it has with the receiver. The initiator decides to
trust the receiver if this overlap is above a threshold. If
the receiver is not trusted, the initiator aborts the pro-
tocol; if the receiver is trusted, the initiator responds
with its verification key, some cryptographic material,
its trust list, and the PSI-CA message required by the
receiver as per the PSI-CA protocol(Trust 1 in Fig. 2).
The receiver can now compute the overlap it has with
the initiator, ending round two of PSI-CA. If the over-
lap is above a threshold, the receiver responds with its
own verification key, some cryptographic material, and
its trust list (Trust 2 in Fig. 2). At the conclusion of
Trust 2, the Moby Handshake protocol is complete.

At the end of a successful Moby handshake, both
initiator and receiver process the trust lists they re-
ceived. Each entity computes a trust score for the op-
posite entity (as described in §3.1.1) and adds it as a
direct trusted contact (0 hop value). They then incre-
ment the hop count of each element in the received trust
list (to signify that the trusted entity is one extra hop
away) and add them to their own trust list. If an entry
already exists, it is added only if the hop count is lower
than the previous value.

3.2 Moby Network Protocol

We now present the Moby network Protocol, which uses
trust lists, message exchanges, and post-exchange pro-
tocols to enable clients to propagate messages while re-
sisting denial-of-service attacks.

The Moby network consists of a set of Moby client’s
spread over a geographic region, using the Moby routing
protocol. The Moby network uses an augmented Epi-
demic [42] routing protocol; when a pair of clients en-
counter each other, they exchange all the messages they



Moby 252

currently store. We improve this classical protocol with
Trust Lists, which determine whether a client stores or
drops messages. Last, we define an optional post ex-
change protocol for cases where a pair of clients do not
recognize each other.

3.2.1 Link Layer Technologies

Our protocol uses wireless network technologies to de-
tect whether a participating client is in communication
range and to exchange messages with these clients. In
the case of our implementation, the ones used are Blue-
tooth and Wi-Fi Direct. We use these link layer proto-
cols because they are widely supported on mobile de-
vices, but any point-to-point technology could be used.

3.2.2 Client Discovery

The Moby Client Discovery step involves discovering
other clients that are within the communication range
of the client executing it. If multiple such clients exist,
Discovery returns a list of all of them and each one of
them is used in the next set of steps. Moby is not de-
signed to hide the fact that it is installed on a device,
thus, we do not require this link layer protocol to satisfy
any security properties. In our prototype, we use Wi-Fi
Direct for usability reasons (see §6).

3.2.3 Sending and Receiving Moby Messages

Moby Network Message: In the context of the Moby
network, a Moby message contains the following com-
ponents:
– A plaintext Time to Live (TTL) value, set by the
sender of the message.

– A plaintext Trust value, initially set by the sender,
changed at each client that relays the message (see
§3.2.4).

– An end-to-end encrypted payload and associated
MAC, using the ephemeral keys that the sender and
receiver share.

The TTL is a (wall-clock) timestamp after which the
message should be dropped by all clients. We require
the TTL and Trust values to be in plaintext as they
need to be read/modified by all Moby clients; attacks
on these values are discussed in §4.3. A sender must first
execute Trust Establishment (§3.1) with the receiver to
send them a message.
Sending a Message: The sender produces an en-
crypted payload and MAC via the Encrypt-then-MAC
method using the shared cryptographic material. It then
sets a large trust value and a random large TTL value
binned by the hour and places the message onto its

own Message Queue. (A random, binned TTL value pre-
vents a local attacker from tracing message origin to the
sender, to an extent.) Messages propagate the network
when Message Exchanges occur.
Receiving a Message: When new messages are added
to a client’s Message Queue following Signature verifi-
cation and trust value updates, the messages need to be
checked to see if the intended destination is the receiv-
ing client. A receiving client checks each new message
with each session it has for its contacts. If, for any ses-
sion, a computed MAC matches the MAC attached to
the message, the receiver knows the sender of the mes-
sage and can decrypt it. We present pseudocode for this
in Appendix B. Note each message remains in the re-
ceiver’s queue until the queue policy (§3.2.6) determines
it should be dropped. This prevents an adversary from
inferring client message reception.

3.2.4 Message Exchange

Moby Message Exchange involves sending a Message
Queue, a Salted Fingerprint, the salt used, and the Sig-
nature generated over both the queue and fingerprint.
Clients use the Client Discovery protocol to identify
hosts to perform Message Exchanges with. If multiple
clients are discovered, a random client is chosen to per-
form this step.
Message Queue: The Moby Message Queue is an or-
dered list of Moby messages sorted based on the message
trust values. As we use binary trust in our evaluation,
all trusted messages would be at the front of the queue
with untrusted ones behind them.
Signature: The Signature is produced by a client that
sends the queue. The key used to produce this Signature
is the signing key corresponding to the verification key
advertised by the client during Trust Establishment (
§3.1). Given this verification key, the receiver of a queue
can verify the integrity of the queue and infer the iden-
tity of the forwarder. The protocol uses this information
to decide how to process the new messages received.
Salted Fingerprint: Signature verification is an ex-
pensive process as compared to hash computation;
knowing the verification key for the Signature would
make this more efficient. Adding a key fingerprint would
achieve this; we make sure to use a salted hash of the
fingerprint constructed as follows H(fingerprint ‖salt)
where salt is a random string of at least 32 characters.
We salt this fingerprint to prevent adversaries from ob-
serving fingerprints they have not seen before. Thus, a
client can identify which verification key to use by first
computing the hash of the salt with all stored finger-



Moby 253

prints and comparing it with the received hash. Fol-
lowing this, the client verifies the Signature, and can
associate the message to a sender (in case a match is
found). We salt fingerprints to protect verification keys
in the network from adversaries (§4.3).

3.2.5 Post Exchange PSI-CA

To compute trust scores of clients not encountered be-
fore a blackout, a pair of Moby clients can perform a
PSI-CA computation following a successful Message Ex-
change. This step is optional as PSI-CA is an expensive
operation, both in terms of computation and communi-
cation overheads.

In our implementation, we always perform this step,
which involves exchanging PSI-CA protocol messages
between a pair of clients. The input sets are populated
using fingerprints of signing keys of already-trusted
clients. Based on the output of this protocol, a client de-
cides to trust or not trust the opposite client. No other
information is to be sent in this step as the underlying
link layer technologies provide no security guarantees.

3.2.6 Message Queue Policy

Moby clients have limited resources in terms of stor-
age space and bandwidth for message exchange. Thus a
message queue policy is necessary for a client to decide
whether to hold or drop messages.

When a Moby client receives new messages, it up-
dates each message’s trust in the queue based on the
client from whom it is received. Following this, new mes-
sages are added to the local queue based on this updated
trust value. Message queues are sorted lists based on
trust values. In case the message queue fills up, mes-
sages with the least trust value are dropped. If multiple
least-trusted messages have the same trust value, one
of them is chosen at random and dropped. This priori-
tization of trust values to store messages helps prevent
network congestion attacks and makes sure that legiti-
mate messages stand a chance of delivery when adver-
saries flood the network with dummy messages. A flood
would result in queues filling up, but legitimate mes-
sages would be at the front of these queues given that
they should on average have higher trust values com-
pared to messages from adversaries.

In the binary model of trust values, the implications
of this policy would be that trusted messages are always
prioritized over untrusted ones. If the queue is filled
with trusted messages, one would be dropped at ran-
dom. Similarly, untrusted messages are picked at ran-
dom when they need to be dropped.

3.2.7 Moby Data Structures

A client that participates in the Moby network main-
tains the following data structures for forwarding mes-
sages: a signing key, a Trust List containing contacts’
verification keys and cryptographic state for each direct
contact, and an ordered list of Moby messages.

The signing key is an asymmetric key, with an asso-
ciated verification key and fingerprint. These are used to
sign message queues and verify signatures as shown in
§3.2.4. The message queue contains all Moby messages
the client wishes to send or relay sorted by the trust
value associated to that message.

The list of cryptographic states associated to users
are established in the Moby Handshake (§3.1.3) and en-
able this client to communicate via Moby messages. Us-
ing this cryptographic state, a client must be able to
encrypt a message and compute a MAC for it or verify
a MAC and decrypt the corresponding message.

4 Security
In this section, we discuss a variety of attacks and
how the Moby ecosystem defends against such attacks.
The adversary’s capabilities are described in the threat
model (§2.3). We briefly discuss the security of the wide-
area communication medium and then discuss attacks
on the Moby network.

4.1 Wide-Area Communication Medium

We assume there is a wide-area communication medium
(e.g., the Internet) that can be disconnected by the ad-
versary. We further assume that secure messaging over
the wide-area medium exists (e.g., end-to-end encryp-
tion via Signal); securing the wide-area channel is con-
sidered orthogonal to Moby’s goals.

4.2 Denial-of-Service (DoS) Attacks

We now discuss several Denial-of-Service attacks on the
Moby network.
Local Jamming: Using specialized jamming hardware
that blocks the link-layer communication medium, the
adversary could prevent Moby network communications
within a small geographic region. Given the geographic
span of the Moby network, the adversary could perform
this attack on a part of the network; we present our
findings related to such an attack in § 5.5.2. No known
defenses exist for such jamming techniques; users in the



Moby 254

jammed region would be directly affected, but those out-
side the region would not.
Network Flooding: An adversary could perform a
denial-of-service attack on the Moby network by flood-
ing the network with malicious messages sent at arbi-
trary locations. Doing so, the adversary would try to fill
the queues of all participating clients; legitimate mes-
sages would be dropped by clients as their queues would
be filled with malicious messages.

Moby uses trust values to defend against such at-
tacks. A malicious message would gain only as much
priority as the client that introduces it into the network.

We argue that adversaries will find it difficult to ob-
tain high trust values. The main reason is that Moby pri-
marily incorporates trust based on contacts in a user’s
phonebook, something that is difficult for an adversary
to control. Even if an adversary were to convince a user
to add malicious contacts to a phonebook, we argue that
either these would be small in number relative a user’s
non-malicious contacts, or there would be so many ma-
licious contacts that it would be conspicuous and de-
tectable. Thus, we assume that on average malicious
clients will have substantially lower trust values than
non-malicious ones.

Given that malicious clients would not have high
trust values in the legitimate network, these messages
would get discarded faster than legitimate messages. We
show the resilience of Moby to such an attack in §5.5.3.
User Flooding: In such an attack, an adversary sends
a number of Moby messages to one specific Moby client.
The goal of this is to exhaust the resources of that client,
by causing it to perform operations on this message
(storing, processing, etc.). Such an attack has limited
effectiveness. For an adversary to send a message to a
client, trust establishment needs to be performed with
that client first. Therefore, this can only be performed
by a client’s trusted entities and not all clients.
Flooding via Coercion: In a coerced flooding attack,
the nodes that flood the Moby network with malicious
messages lie within the system. These attackers would
be on some contact lists and use this trust to carry out
an attack. Such attacks are effective, but limited given
that a small number of users can be coerced. We show
the extent of such attacks in §5.5.4
Handshake Attack: An adversary could initiate many
handshakes with clients within wireless range, to get
them to waste energy performing computations. Such
an attack would not scale as multiple malicious nodes
would need to be present at a specific location to at-
tack all users. If there are few such attackers, legiti-
mate nodes in the area would still be able to perform

exchanges; if there are many attackers, this attack be-
comes a jamming attack (discussed earlier). Thus, this
attack could disable relatively small geographic regions
of the network where the attackers are located, but it
would not disrupt the entire Moby network.

4.3 Attacking a Moby Message

These attacks involve trying to exploit a Moby message
to obtain information about communicating clients or
to disrupt its propagation through the Moby network.
Sender/Receiver Tag Identification or Spoofing:
The Moby MAC as described in 3.2.7 has the property
that it can be verified only if a user has knowledge of
a secret. This secret is known only to the sender and
receiver. Thus, an adversary cannot identify the sender
or receiver given the MAC without having compromised
the shared secret. Further, they cannot produce a MAC
that is accepted by a receiver and hence cannot spoof
the sender or receiver for a given message. Lastly, mes-
sages are introduced and removed from message queues
of clients in a way that prevents local adversaries from
inferring the senders and receivers of messages (as dis-
cussed in §3.2.3).
Attacking the TTL Value: Moby messages contain
TTL values that are in plaintext (can be read/modified
by any intermediary client). Tampering with the TTL
value is possible and would be equivalent to introducing
a malicious message into the network. These modified
messages would only gain as much priority as the en-
tity that modified it. Thus, regardless of the TTL val-
ues, these modified messages would get discarded sooner
than legitimate messages based on trust values. Attack-
ing message TTL values would therefore not affect the
overall performance of the Moby network.
Payload Attack: An adversary could try to obtain in-
formation about the message being sent between a pair
of users based on the payload of a Moby network. To
prevent this, all message payloads are end-to-end en-
crypted; only the sender and receiver of the message can
read the contents of the payload, given the adversary
cannot break standard cryptographic building blocks.
Fingerprint Enumeration: Fingerprints associated
to a clients verification key are used as input in the PSI-
CA protocol (in both places PSI-CA is used). Thus, if
an adversary has knowledge of all the verification keys
used in the Moby network it could use that in Equa-
tion 1 to maximize the first component. Moby protects
against this using salted fingerprints so enumeration is
not possible.



Moby 255

4.4 Moby Network User Inference

Moby uses link-layer technologies that broadcast the use
of Moby. Thus, it is easy to infer that a person is running
Moby client on their device based on these broadcasts.
We do not defend against such attacks.

4.5 Trust Link Identification

The adversary could try to infer which user trusts which
other user in the Moby network in this attack. This
would be possible if the adversary could infer trusted
contacts in the handshake phase. We use PSI-CA to
protect against this; an entity that performs the hand-
shake only obtains the cardinality of overlap and not
which elements overlap itself. Further, tricking an en-
tity into performing a handshake with the adversary is
a challenge as well, which protects against such identi-
fication attacks.

4.6 Trust Establishment Attack

An adversary could try to maximize its trust value for
other attacks on the Moby network. This is prevented as
follows. The trust establishment step is only performed
with users that are sufficiently trusted (§3.1). Further,
the overlap value computed using PSI-CA is capped;
an upper bound is set to the number of elements used
as input in that protocol. By setting reasonably con-
servative limits, one can mitigate dictionary attacks on
client trust lists (i.e., when an attacker claims to trust
all Moby clients to maximize set intersection values).

4.7 Post Exchange PSI-CA Attacks

The PSI-CA exchange, when done over an insecure
channel could leak some information. The fact that a
pair of clients are performing this exchange would imply
that they do not trust each other. On the other hand, if
this is executed even if clients trust each other, it would
add unnecessary overheads to the Moby network. Thus,
this piece of the system is marked optional and is up to
the client and/or implementer to decide.

Next, a man-in-the-middle attack could be per-
formed if PSI-CA were performed over an unreliable
channel. Although authenticated PSI exists [16], it is not
sufficiently fast for cardinality computation and thus we
do not use it. As securing the PSI-CA protocol over an
insecure channel is not a goal of this paper, we do not
explore this any further.

4.8 Out-of-Scope Attacks

Targeted Attacks: Attacks where one user, or a set
of users are targeted by the adversary whereby they are
followed, monitored, burglarized, coerced, and the like.
Such attacks can not be solved with a technical solution.
Secure Devices: We do not defend against attacks on
Moby client devices via malware, or other side-channels.

5 Simulation-Based Evaluation
To evaluate Moby’s system design at scale, we perform
trace-based simulations on our filtered dataset contain-
ing cell tower data of 268,596 users for the span of
a week. We begin by describing our data, simulation
framework, and simulation experiments. We then use
our experiments to analyze the impact of key Moby pa-
rameters and the simulation environment on our key
performance metrics: message delivery ratios (number
of messages delivered to number of messages sent) and
message latencies. We evaluate Moby both in the ab-
sence of an attack, and using an adversary who floods
the network with dummy messages as part of a DoS
attack. We find that Moby substantially outperforms
Epidemic/Firechat under a network adversary. Firechat
uses Epidemic routing over a mesh network and thus is
identical to the Epidemic routing we evaluated. In the
best-case scenarios we investigated, Epidemic/Firechat
routing achieves 1.15% delivery rate under an adversary,
while Moby achieves 13.96% in the same conditions.

Note that Moby uses contact lists, call histories and
hop counts to realize trust graphs while Rangzen [28]
uses an already provided social graph. Thus we could
not compare these approaches due to a lack of a large
mobility dataset with both call information and social
graphs. We could not compare with Briar [11] because
it lacks a formal specification. Finally, we investigated
using other mobility traces (e.g., from taxis) but could
not identify a realistic way to map those mobile nodes
to Moby trust graphs.

5.1 Dataset

Our dataset contains call data records from a large Eu-
ropean cellular provider’s network deployment, gath-
ered in 2009. During that one year, we observe that
25,719,853 users placed 6,000,444,782 phone calls and
sent 1,642,489,960 messages. The dataset specifies the
cell tower (and its geographic location) used for each
phone call or text message, which allows us to roughly



Moby 256

geolocate a user at that moment of communication.
Each user is anonymized and assigned a randomly gen-
erated unique ID; thus our data contains no user iden-
tifiers whatsoever. (Note that the dataset contains nei-
ther user-identifiable data—phone numbers are replaced
with random strings—nor precise geolocations, the data
is kept in secure access-controlled environments, and the
research protocol was approved by our IRB.) We discuss
the limitations of our dataset in §7.
Data Filtering: We perform a number of filtering op-
erations on this dataset to use in our simulation frame-
work. First, we filter the data to consider a specific geo-
graphic region; the span of the region is that of a highly
populated city in the European country for which we
have data. Next, we analyze the pattern of communi-
cations that users in that region have for the span of
the year of data. We do so to pick the most represen-
tative week of the year on which to run our simula-
tions. We compare communication statistics in terms of
calls placed, messages sent and number of users that
participate for a given day. Lastly, we filter users that
send/receive messages in our simulation by a liveness
metric which is the number of hours a user is observed
communicating (via calls or messages) in the span of
days we select. After the filtering steps, we end up with
268,596 users (liveness of 1) who are simulated. For plots
in this section, we use a liveness of 4 (78,486 users).
Tower Distribution: After filtering, our simulations
use 786 towers that cover an area of ≈180km2. To
approximate range of the cells corresponding to these
towers, we calculate the average distance between each
tower and its five closest neighbors. Averaging this value
across all towers in the network and dividing by two to
get a radius, we find the the average range of towers to
be 118m (σ =86m). Thus, for much of the region, the
range of cells that users connect to is relatively small,
and thus users connected to the same cell are in many
cases capable of connection via the wireless channels
needed for the ad-hoc network.

5.2 Simulation Framework

We implement a custom network simulator to mea-
sure the performance of Moby as well as previous sys-
tems. The simulator uses call data records to simulate
users and their movements, and advances time in one-
hour increments, due to the one-hour granularity of our
dataset. Each user in the system has a message queue;
messages sent by the user are added to the queues at
the right hour (based on when they are sent). When a
pair of users are sufficiently close to each other (asso-

ciated to the same cell tower for an hour), a message
exchange is simulated between them. At message ex-
change time, the simulator executes the Moby routing
using trust information for the corresponding pair of
users. Last, the simulator can simulate network adver-
saries that perform attacks on the network.

Thus, we have a framework to simulate the Moby
network and measure the guarantees it provides if de-
ployed in the real world. Using the simulator we obtain
performance metrics in terms of message delivery ratios
and message latencies.

5.3 Experiments Performed

To compare Moby with previous systems for ad-hoc net-
works, we perform network simulations using the Epi-
demic routing algorithm, using our filtered dataset. We
explore a number of different simulation and Moby pa-
rameters, including some that are relevant only for at-
tack scenarios (e.g., volume of attack messages injected
into the network).

Note that in the absence of an active network ad-
versary, we found that the Moby routing protocol per-
forms nearly identically to Epidemic/Firechat routing,
and we show only Moby performance in those scenar-
ios. We directly compare Moby and Epidemic/Firechat
routing only under attack scenarios.

5.4 Simulation Parameters

This section details our simulation parameters (see Ap-
pendix C for a compact summary) and presents the val-
ues we explore along with why these were chosen.
Fixed Parameters: We begin by picking a geographic
region corresponding to a large metropolitan area to
filter out the set of users we simulate from the large
dataset we possess. Moby is intended for deployment
in dense urban areas that provide many opportunities
for clients to exchange messages, so we do not evalu-
ate suburban or rural areas. We use 3 days of data to
drive our simulations after testing longer timescales (up
to 7 days), as longer spans did not further improve de-
livery ratios, and results overall were not substantially
different. We analyze the daily mobility and daily com-
munication patterns for the chosen region for the year
in terms of total calls made, total messages sent, and
total users observed. We use this information to pick a
set of days that match the average number of messages
sent in a region over 3 days; the days chosen are the
53rd to the 56th day of the year.



Moby 257

Based on the communication patterns of the partic-
ipating users, we set the number of messages to be sent
to 30,000. Messages are sent in the first 48 hours of the
simulation with “cooldown" period of 24 hours when no
new messages are introduced to the network, to allow
time for delivery of recently generated messages. Sources
for these messages are picked randomly from the set of
users, and corresponding destinations are picked based
on the contact list of the source user. To account for any
bias from source selection, we perform multiple simula-
tions for each configuration, each with a different ran-
dom selection of senders. We present average metrics
since the range of results across such simulations was
only 0.2–0.5%. To model a real-world message load on
the Moby network, the number of messages sent each
hour is proportionate to the text messages that users
sent during that hour in our trace data. (We found sim-
ilar results when using number of calls instead of text
messages.) The contact list is set to a constant value for
all simulations, details about this list are in §5.1.
Connectivity: Due to the lack of precise user location
information in our dataset, we varied the percentage of
users that perform a message exchange within a tower.
We noticed a negligible drop in delivery ratios (under
1% for all TTLs) when half the pairs of users perform
message exchanges; further, even when only 10% of user
pairs connected to the same tower can exchange mes-
sages, performance of the network drops by less than
5% for TTLs 24 and higher and even lower (under 2%)
for TTLs 48 and higher. To focus our analysis on other
factors that affect the Moby network, our evaluations
below use the setting where all users connected to the
same tower per hour perform exchanges. For more de-
tails about performance with fewer users being able to
conduct exchanges, see Appendix E.
Varied Simulation Parameters: We vary other pa-
rameters in their respective ranges to observe their ef-
fects and to monitor their interact with each other. We
define liveness of a user as the number of hours the user
appears in the dataset for the given span of days. Live-
ness is varied between 1 and 12 in increments of 2. The
number of DoS messages injected into the network per
hour varies from 0 to 10, that number of messages is
sent to all users at that location at the given hour.
Varied Moby Parameters: We investigate several
Moby configuration parameters to understand their
trade-offs with respect to performance. Per user queue
size is varied between 5,000 and 30,000 in increments of
5,000. The time to live (TTL) for each message is varied
between 12 and 72 hours in increments of 12 hours. In
our figures, when we refer to “TTL N”, we mean “N

hours after each message was sent.” Thus our figures
refer to average performance for a given initial TTL,
and not wall-clock time in the simulation. The trust list
parameter is varied. Different trust lists are generated
for different hop values, i.e. hop 0 implies that all con-
tacts are trusted, 1 implies that all 1 hop contacts are
trusted as well, and so on. We explored nonbinary trust
based on call frequency (where trust in a client is the
number of communications with that client divided by
the total number of communications). While the result-
ing trust values were asymmetric, we found that results
were very similar to (symmetric) binary trust (further
discussed in§ 7). Thus we use only the simpler binary
trust approach in our evaluation. We evaluate the im-
pact of indirect trust by varying hop counts among 0
(no indirect trust), 1 and 2.

A summary of parameters is in Appendix C.

5.5 Performance Results

We now present performance results for Epi-
demic/Firechat routing and Moby routing in terms
of message delivery rates and message latencies when
run using our filtered dataset. We find that Epi-
demic/Firechat and the Moby routing protocols per-
forms nearly identically in the absence of an adversary.
We then compare Moby with Epidemic/Firechat under
an active denial of service performing adversary.

5.5.1 Performance in the Absence of an Adversary

We now investigate the performance of Moby without
an adversary. Our goal is to identify the impact of Moby
parameters (TTL and queue size) on message delivery
and latency. We find that in the simulated environment,
there are performance trade-offs for these parameters,
and we highlight combinations that are most effective.
Delivery Ratios: For simulations in the absence of an
adversary, we vary liveness, user queue size, and time to
live (TTL). We observe that for different liveness val-
ues, delivery ratios vary, but overall trends for queue
size and TTL hold; liveness is directly proportional to
delivery ratio. Thus, we present metrics for simulations
with a liveness of 4 (78,486 users), all other liveness val-
ues showed us similar trends.

To investigate the effect of varying queue sizes and
TTLs on delivery ratios, we plot delivery ratio on the
y-axis and TTLs on the x-axis and draw lines linking
simulations with same queue size values in Fig. 3. For
queue sizes less than 30,000 (all messages in the net-
work), we find that delivery ratios first rise up to a



Moby 258

12 24 36 48 60 72

0.2

0.4

0.6

0.8

1

Time To Live (h)

D
el
iv
er
y
R
at
io

QS 5,000 QS 20,000
QS 10,000 QS 25,000
QS 15,000 QS 30,000

Fig. 3. Effects of varying time to live
for a queue size in terms of delivery
ratios. Increasing TTLs leads to a rise in
delivery ratio up to a point after which
a drop occurs due to filled user message
queues.

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

% of Network jammed

Fr
ac
tio

n
D
el
iv
er
y
R
at
io

of
E
pi
de

m
ic
/F

ire
ch
at

TTL:12 Random TTL:12 Oracle
TTL:48 Random TTL:48 Oracle
TTL:72 Random TTL:72 Oracle

Fig. 4. Impact of jamming on delivery
ratio compared to Epidemic/Firechat
routing. Lower TTLs suffer worse deliv-
ery ratios under jamming, and jamming
popular locations (Oracle) is more effi-
cient than random, as expected.

12 24 36 48 60 72
0

0.05

0.1

0.15

Time To Live (h)

D
el
iv
er
y
R
at
io

Epidemic/Firechat Moby 1 hop
Moby 0 hop Moby 2 hop

Fig. 5. Performance of Epi-
demic/Firechat, Moby 0, 1, and 2 hop
during a DoS attack. Moby routing con-
sistently outperforms Epidemic/Firechat
in such environments, with higher trust
hops performing better.

Average Latencies (h)
TTL (h) Minimum Mean Maximum Avg Std Dev

12 4.84 5.49 5.77 3.56
24 9.15 12.08 14.7 7.35
36 9.67 15.11 18.68 9.28
48 9.79 17.57 23.81 11.68
60 9.79 16.6 20.63 12.74
72 7.02 12.74 17.21 10.06

Table 1. Statistics for average latencies for the set of simulations
grouped by time to live. Average latencies initially increase with
TTL, and drop under very large TTLs due to higher number of
messages being delivered closer to when they were sent.

point after which a drop occurs. Follow the line with
solid boxes (queue size 10,000), we find that the delivery
ratio first rises going from TTL 12 to TTL 24 but then
begins to drop after 24. This tells us that for a given
queue size value, there is an ideal TTL value at which
the network performs the best, increasing TTL beyond
that point causes the queues of numerous clients to fill
up with messages that cannot be delivered, thus leading
to lower delivery ratios.

As we increase the queue size, keeping TTL con-
stant, we find that delivery ratios increase up to a point,
after which there is no improvement (at around 30,000
queue entries).
Message Latencies: We now look at the average mes-
sage latencies for a simulation, averaging values over the
set of all delivered messages. We find that the spread of
latency values for messages delivered in each simulation
is large, and thus computed the minimum, mean, maxi-
mum, and standard deviation of latencies, averaged over
the set of simulations with the same TTL; the results are
in Table 1. Following the means (2nd column), we no-

tice an increase until TTL 48, after which latency drops.
We analyzed message delivery patterns and message la-
tency patterns for each simulation, and found that most
of the messages that get delivered in these simulations,
get delivered close to when they were sent, but con-
tinue to occupy user queue space due to the TTLs be-
ing large. (Note that unlike in a traditional IP routing
network, messages stay in the queues until the TTL ex-
pires.) This adversely reduces delivery ratios, but the
average latency is lower because the messages that are
delivered tend to be delivered quickly.
Setting Optimal Parameters: Most messaging sys-
tems strive for high delivery ratios and low latencies; we
explore the effect of all parameters on both these statis-
tics to find the optimal parameters to tune Moby. We
primarily concentrate on the effects of both queue size
and TTL on both delivery ratios and latencies. To sum-
marize our analysis, we found that common factors for
good performance are relatively large queue sizes (to
increase delivery ratios) with moderately sized TTLs
(36 hours or higher for larger queue size) to tame queue
buildup. Under such conditions, Moby achieves high de-
livery ratios (>0.8) with latencies in the range of 15–17.5
hours. Please see Appendix D for more detail on our pa-
rameter space exploration.

5.5.2 Performance During a Jamming Attack

To understand the impact of a jamming attack on the
Moby network we consider two attacks: randomly jam-
ming locations and jamming the locations most visited
by users (which we refer to as oracle attacks as it re-
quires a priori knowledge). When a region is jammed,



Moby 259

10 100 500 1,000

10,000

15,000

20,000

25,000

30,000

Number initially compromised

N
um

be
r
fin

al
ly

co
m
pr
om

is
ed

Fig. 6. To understand the extent of a compromised user attack,
we vary the initial number of compromised users in the x-axis
(10, 100, 500, 1000) and measure the total number of users that
are affect at the end of the simulation in the y-axis.

no users can exchange messages in that region. The lat-
ter gives us an upper bound on the attack’s effectiveness.

Fig. 4 plots the results of jamming attacks for differ-
ent TTLs. The y-axis is the delivery ratios as fractions
of the baseline result (Epidemic/Firechat without jam-
ming), and the x-axis is the fraction of the simulated re-
gion that is jammed. Each line represents a TTL value
and jamming strategy; we omit some TTLs because they
exhibited similar trends as the ones shown. As expected,
we observe that delivery ratios drop as the jammed re-
gion increases and random jamming is less effective than
an oracle attack.

While these results may indicate that jamming can
be an effective attack, it is important to put the re-
sults in context. Jamming just 10% of the Moby network
involves covering a large geographic area (78 cell tow-
ers, ≈ 4.5km2) which already requires significant cover-
age and would likely incur substantial collateral dam-
age. Further, obtaining a jamming oracle is difficult as
movement patterns during a blackout would be unpre-
dictable. Lastly, our results show that Moby is resistant
to low amounts of jamming, for random or oracle based
attacks. Thus, the effect of such an attack on our system
is limited under practical constraints.

5.5.3 Performance During a DoS Attack

For simulations in the presence of an adversary, we vary
liveness, user queue size, time to live, number of mali-
cious messages sent, and the contacted threshold (i.e.,
the minimum number of communications between users
to be considered trusted, as explained in Table 2). We
generate malicious messages as follows: we place an
adversary at each message-exchange location (i.e., cell
tower) and send a fixed number of malicious messages
to every user at the location every hour. In total, thou-
sands of attack messages are generated per hour, while

the number that get propagated depends on the number
of users at the location at each hour. After testing var-
ious values for number of malicious messages sent per
hour, we find that delivery ratios fall drastically (even
for low rates). Based on this, we selected a rate of 10
messages per location per hour, as this was sufficient to
make Epidemic routing’s delivery ratio near zero.

We simulate Epidemic/Firechat routing in this ma-
licious environment and compare the results we obtain
to those for the Moby routing protocol. We plot a curve
for each routing protocol (Epidemic/Firechat and Moby
with different levels of indirect trust) with delivery ra-
tios on the y-axis and time to live (TTL) values on the
y-axis in Fig. 5. The solid squares line shows the perfor-
mance of Epidemic/Firechat routing, while the hollow
triangle, solid triangle, and solid circle lines show the
performance of Moby routing with 0 (only direct trust),
1 (trust contacts of trusted contacts) and 2 hop trust
metrics, respectively. Recall that our binary trust model
provides an upper bound on message delivery when com-
pared to other trust models.

Our first key observation is that Epidemic/Firechat
performance is abysmal under attack—delivery ratios
are approximately 0.01 across all tested TTL values.
The reason is that the message queues are filled with
malicious messages, leaving little-to-no room for legiti-
mate messages to be forwarded or delivered. It also mo-
tivates the need for an attack mitigation strategy. Next,
we note that even without indirect trust (the 0-hop
curve), Moby substantially increases delivery ratios—by
up to 5x in the case of large TTLs. We see a similar trend
for larger hop values (allowing indirect trust), with the
exception that larger hop values leads to substantially
better delivery ratios (up to 0.14, an approximately 14x
improvement over Epidemic/Firechat). This is because
the network of directly trusted clients is quite sparse,
and using indirect trust allows the network to be denser
and thus support more trusted message exchanges dur-
ing network attacks. Thus, while Moby cannot recover
the original performance while under a large-scale at-
tack, it still manages to deliver a substantial fraction of
messages compared to the case of no active attack.

5.5.4 DoS via Compromised Users

We now estimate the extent of a DoS attack where an
adversary uses trusted clients to flood and fill message
queues of legitimate clients, thus leaving no trusted slots
for legitimate communication. In this model, which is
based on a simpler simulation that does not require
modeling message transmission, a trusted user that



Moby 260

comes in contact with a compromised user is considered
to be DoSed. We focus on the number of compromised
users instead of delivery ratios, as they represent the
portion of the Moby network that is disabled indepen-
dent of the message transmission patterns.

We pick initial users at random, varying the number
picked in the x-axis, and plot total users DoSed on the
y-axis in Fig. 6. We perform 10 experiments for each
scenario and show averages and standard deviation error
bars. To understand the maximum extent of this attack,
we use two-hop trust. Even with a small set of such
users, the attack is effective for a significant subset of
users; however, the attack has diminishing returns as the
number of compromised users increases. On average, we
see between 3.92% and 10.61% users being finally DoSed
for the range of initial users we test. While effective, it
is an open question whether such a compromise attack
can be successfully mounted at scale.

6 Implementation and Evaluation
To provide further evidence of the feasibility of Moby,
we built a prototype client app and evaluated energy
costs of running it on a mobile device.

6.1 Implementation Details

We implement the Moby app as a fork of Signal An-
droid app [2] with modifications implementing all func-
tionality of a Moby client. We use Signal’s infrastruc-
ture as the “secure wide-area communication medium”
mentioned in Section 3.1.2. Moby trust establishment
is performed with handshake messages sent via Signal.
This is performed with all contacts on the first installa-
tion of the app and subsequently with any new contacts
the user adds. Handshake messages are crafted in such
a way that they can be recognized only by other Moby
clients and ignored by non-Moby Signal users. Clients
respond to handshake messages following the protocol
Moby Handshake protocol (Section 3.1.3).

The Moby app performs client discovery by adver-
tising Bluetooth MAC addresses via Wi-Fi Direct bea-
cons. Message Exchanges and Post Exchange PSI-CA
are done over Bluetooth using MAC addresses obtained
in this discovery phase.

These technologies are used in combination to allow
the application to discover clients and transmit data
without any user interaction. Discovering nearby de-
vices via Bluetooth requires user interaction while set-
ting Wi-Fi Direct beacons does not. Sending messages

over Wifi Direct requires user interaction whereas send-
ing them over Bluetooth insecure connections does not.
These link layer technologies could be updated in the
future; Moby uses them as black-boxes. as they do not
affect components of Moby built on top of them.

The asymmetric key cryptography used for a Moby
client’s public key is RSA with a key size of 2048
bits. The Double Ratchet [40] protocol’s Symmetric-key
ratchet provides the necessary properties required by
the cryptographic material defined in Section 3.1.2. Our
implementation uses the Double Ratchet instance used
by Signal for a given Moby client, and we ratchet only
the Symmetric-key, as break-in resistance (provided by
the second ratchet) is not required and out of scope.
We use only the encrypted payload and standard MACs
that we obtain from this instance of Double Ratchet. We
do not add any source or destination identification in-
formation; thus, only the client we share this instance of
the algorithm with will be able to verify that the mes-
sage is meant for it. We perform a small study among
the authors to verify the functionality of the application
and present its open source implementation [9].

6.2 Power Consumption

We now measure the power consumption of our Moby
clientimplementation using the Battor [33] power mon-
itor, which provides power readings. We use two Nexus
5 devices, and conducted three measurements on each
device (variance among experiment results was suffi-
ciently small to rely on three measurements). We inves-
tigated the power consumption of all client operations
and found that PSI-CA was the most power-consuming
step. We test different values of PSI set sizes and present
them in Appendix F; discussing a set size of 100 here.
Each test device carries 31464 Joules of energy when
fully charged; A PSI-CA operation with 100 input el-
ements consumes 2.5 J of energy and uses 3s of CPU
time. This implies 12,586 such exchanges can be per-
formed on a charged phone, assuming no other opera-
tions of the phone consume energy. To summarize, we
found that mobile devices can handle a large number of
message exchanges on a single charge; however, the en-
ergy consumption is nontrivial. As such, an implemen-
tation needs to carefully consider the input set sizes (to
limit energy consumption per exchange). Further, there
should be a small number of options (e.g., 25, 50, 100,
200) for input set sizes, to prevent fingerprinting of users
by ensuring non-unique set sizes.

Note that measurements were performed on a previ-
ous version of Moby that did not include salted finger-



Moby 261

prints (before signing) or salt generation. These steps
add minor overheads that do not change power con-
sumption of the PSI-CA operation.

7 Discussion
In this section, we discuss some limitations of Moby in
order to help clarify what Moby’s design achieves.
Binary and Nonbinary Trust: Our system uses bi-
nary trust values instead of a trust value that takes on a
range of values between zero and one. To justify this de-
cision, we explored the use of a nonbinary trust metric
where trust in a user is calculated using communication
frequencies. Specifically, we calculate trust in a client
as the number of communications with that client di-
vided by the total number of communications, where
communications include both calls and text messages.
When running simulations with these trust values, we
found differences between binary and nonbinary trust
that we not statistically significant. Thus we use only
binary trust in our simulations.

We analyzed why there were insignificant differences
by studying message queues. Trust in Moby is used to
decide whether a message should remain in a client’s
queue or be dropped. For nonbinary trust to affect our
simulations, we would need a case where a client’s queue
is filled entirely with trusted messages. In such cases
trust values would affect which messages get to stay
and which ones get dropped. However, we observe that
such cases are rare; in all cases, the number of untrusted
messages always outnumber trusted ones. Thus, trusted
messages never compete for space in message queues
and nonbinary trust performs the same as binary trust.
Formal Proof of Anonymity: We provide a heuris-
tic, but not formal, proof of anonymity for Moby (Ap-
pendix A). This informal proof considers each aspect of
anonymity and relies on the non-existence of a global
passive adversary. It does not formalize Moby compo-
nents to prove anonymity properties.
Latency of Moby: Moby aims to provide commu-
nication when wide-area networks (i.e., the Internet)
are shut down. It does not guarantee message delivery
or timely message delivery. Our evaluation of the sys-
tem tells us that latencies achieved are relatively high
(§ 5.5.1). This is an important limitation of the system;
however, we believe that some form of secure communi-
cation is better than no communication at all.

We also note that higher delays occur for messages
that must traverse large geographic distances to reach
their destinations. In contrast, there are use cases such

as rallies or protests where messages need to be trans-
mitted over short distances. In such scenarios, delays
are expected to be small.
Dataset Limitations: As with any trace-driven simu-
lation, there are limitations to our approach. First, we
underestimate the set of locations a user visits because
we obtain cell tower locations for a user only when they
make/receive a call or send/receive a text message. Fur-
ther, the coarse location granularity based on cell towers
means that we cannot precisely identify when two users
are within range to share Moby messages; we vary the
number of users exchanging messages within an hour at
a particular tower to model cases where not all users
connected to the same tower can communicate wire-
lessly during a blackout. Lastly, to construct the “con-
tacts” list for a user, we assume that each user contacted
(calls or texts) is part of this list.

Despite these limitations and assumptions, to the
best of our knowledge this is largest set of trace data
available to us that includes not only information about
user mobility but also the set of phone numbers con-
tacted by those users. Even using conservative assump-
tions about contact lists and the set of users who can
forward messages when connected to the same tower,
we show that Moby provides reasonably efficient com-
munication during blackout periods.
Movement Patterns During Blackouts: As stated
above, we use movement patterns of users collected dur-
ing periods of Internet connectivity, while evaluating a
region under an Internet blackout. Unfortunately, we do
not have a way to predict movement patterns of users
during blackouts. This is a limitation of our evaluation
that we acknowledge but can not address.
Extending Moby to Other Systems: Our approach
can be ported to any short-message system that can
tolerate delays and dropped messages during blackouts.
However, we do not believe that Moby can be extended
to arbitrary communication systems. Experience shows
that purpose-built anonymity systems (e.g., P2P down-
loading [25] and voice communication [24]) can outper-
form general-purpose ones. That said, generalizability
remains an important and unsolved goal.

8 Related Work
Anonymous Communication During a Blackout:
Closely related works to Moby include Rangzen [28],
Briar [11], FireChat [32], and Bridgefy [3], all of which
support anonymous communication during blackouts.
Rangzen presents a microblogging platform that pro-



Moby 262

vides fewer security guarantees than Moby; which in ad-
dition to more security properties, provides a messaging
platform. Briar provides a messaging system but uses
different communication channels to relay these mes-
sages, requiring that users be on the same local network
for Briar to deliver messages. It also expects users to
establish trust manually in person. Moby in contrast,
does not require manual trust establishment and pro-
vides message delivery even if users are not in proximity
to each other. FireChat uses a mobile ad-hoc network
to forward messages, but only for a short time window.
In addition, FireChat is neither private nor secure [45].
Bridgefy provides an SDK claiming to be private and
secure but is broken in practice [7].
Secure and/or Anonymous Networks: Our work is
inspired by a wide range of usable, secure and/or anony-
mous communication tools, such as Tor [18], I2P [1],
Signal [2], Herd [24], Dissent [36], and Mesh [4]. Un-
like these networks, Moby provides secure, anonymous
communication during Internet blackouts.
Secure Encounters: There exist solutions that pro-
vide secure ways to discover and recognize devices [27].
Moby does not require its usage as it does not consider
cross encounter linkability as a security concern. Fur-
ther, SDDR is highly user unfriendly as it requires root
privileges and breaks usability of applications using it.
Trust Networks: Using a notion of trust among partic-
ipating nodes has been explored in the past; centralized
approaches [13, 43] to do so can be effective, but are not
practical in our system due to their centralized nature.
Previous decentralized approaches [39, 46, 47] were not
designed for communication during blackouts and thus
cannot be applied in our network.

Trust-based systems like EigenTrust [22] use global
trust values for users while Moby uses local trust. Other
reputation-based systems for assigning trust or rep-
utability, e.g., TrustRank [19], are incompatible with
Moby because they assume a set of pre-trusted entities.
Anonymity in Moby-Like Networks: Anonymous
communications in networks that have similar network
architecture like Moby has been studied before [21]. This
solution considers a different threat model without the
exploration of network attacks of any sort and trusting
all participating nodes. They do provide sender-receiver
unlinkability but do not guarantee receiver anonymity,
which is impractical in malicious environments.
Opportunistic Communication Networks: Moby
uses a simple opportunistic routing protocol over a
delay-tolerant ad-hoc network to forward messages
anonymously during a blackout. While it is possible to
use sophisticated routing protocols that optimize per-

formance, we use a relatively straightforward routing
protocol. Optimized routing protocols [26, 29] share
extra information to make routing more efficient, but
this leads to sharing information about users and hence
makes these protocols vulnerable to identification at-
tacks. Recent work focused on security, anonymity, and
privacy in opportunistic networks [5, 10, 21] consider
different threat models in comparison to Moby. Unlike
these, Moby is resistant to active network adversaries.
Modeling Mobile Users: Similar to us, prior works
use CDR data to model network properties including
communication patterns [12], mobility [34, 35], and so-
cial ties [23]. We are the first to use such data to evaluate
anonymous communications during blackouts.

9 Conclusion
We presented the design, implementation, and eval-
uation of Moby—a blackout-resistant anonymity net-
work for message communication via mobile devices.
Moby’s bi-modal design combines a wide-area commu-
nication channel and an ad-hoc network to provide se-
cure, attack-resistant communication during disruptions
to Internet connectivity. Moby uses a notion of trust
built upon the notion that most parties who communi-
cate via calls or text message trust each other more than
those who do not. Moby establishes such trust between
clients over a secure channel over the Internet during
times of connectivity, then uses this trust in Moby’s
novel ad-hoc network protocol to thwart network ad-
versaries. We implemented and used a custom network
simulator and a large set of user mobility and communi-
cation traces from a cellular provider to identify the im-
pact of configuration parameters on performance, and
demonstrate how trust leads to as much as a 14x im-
provement in message delivery rates when under a DoS
attack. We implemented the Moby client as a proof-of-
concept Android app and demonstrated the feasibility
of running the app in terms of power consumption.

Acknowledgments
We thank our anonymous reviewers, and our shepherd
Saba Eskandarian. This work was supported by the
National Science Foundation (Grants: SaTC-1618955
and ProperData SaTC-1955227). Any opinions, find-
ings, and conclusions or recommendations expressed in
this material are those of the authors and do not neces-
sarily reflect the views of the NSF.



Moby 263

References
[1] The invisible internet project (I2P). https://geti2p.net/en/

about/intro, 2019.
[2] Signal, 2019. https://signal.org.
[3] bridgefy, 2022. https://bridgefy.me/.
[4] Mesh, 2022. https://mesh.im/.
[5] Paarijaat Aditya, Viktor Erdélyi, Matthew Lentz, Elaine Shi,

Bobby Bhattacharjee, and Peter Druschel. Encore: Private,
context-based communication for mobile social apps. In
Proceedings of the 12th Annual International Conference on
Mobile Systems, Applications, and Services, MobiSys ’14,
pages 135–148, New York, NY, USA, 2014. ACM.

[6] Africa News. Ethiopia restores internet access after shut-
down for exams, June 2017. http://www.africanews.
com/2017/06/08/ethiopia-restores-internet-access-after-
\shutdown-for-exams/.

[7] Martin R Albrecht, Jorge Blasco, Rikke Bjerg Jensen, and
Lenka Mareková. Mesh messaging in large-scale protests:
Breaking bridgefy. In Cryptographers’ Track at the RSA
Conference, pages 375–398. Springer, 2021.

[8] Anonymized for submission. Private communication with a
humanitarian field worker in Syria., September 2017.

[9] Anonymous. Moby proof of concept code, 2019. https:
//anonymous.4open.science/r/0f48ac77-399c-4ddd-9abe-
f28e6782ef4c/.

[10] M. S. Arafath and K. U. R. Khan. Opportunistic sensor net-
works: A survey on privacy and secure routing. In 2017 2nd
International Conference on Anti-Cyber Crimes (ICACC),
pages 41–46, March 2017.

[11] Biar Project. Briar, 2017. https://briarproject.org/how-it-
works.html.

[12] Julián Candia, Marta C González, Pu Wang, Timothy
Schoenharl, Greg Madey, and Albert-László Barabási. Un-
covering individual and collective human dynamics from
mobile phone records. Journal of physics A: mathematical
and theoretical, 41(22):224015, 2008.

[13] Qiang Cao, Michael Sirivianos, Xiaowei Yang, and Tiago
Pregueiro. Aiding the detection of fake accounts in large
scale social online services. In Proceedings of the 9th
USENIX conference on Networked Systems Design and Im-
plementation, pages 15–15. USENIX Association, 2012.

[14] H. Corrigan-Gibbs, D. Boneh, and D. Mazières. Riposte:
An anonymous messaging system handling millions of users.
In 2015 IEEE Symposium on Security and Privacy, pages
321–338, May 2015.

[15] Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. Fast
and private computation of cardinality of set intersection
and union. In International Conference on Cryptology and
Network Security, pages 218–231. Springer, 2012.

[16] Emiliano De Cristofaro and Gene Tsudik. Practical private
set intersection protocols with linear complexity. In Inter-
national Conference on Financial Cryptography and Data
Security, pages 143–159. Springer, 2010.

[17] Claudia Diaz, Stefaan Seys, Joris Claessens, and Bart Pre-
neel. Towards measuring anonymity. In International
Workshop on Privacy Enhancing Technologies, pages 54–
68. Springer, 2002.

[18] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor:
The second-generation onion router. In Proceedings of the
13th USENIX Security Symposium, August 2004.

[19] Zoltán Gyöngyi, Hector Garcia-Molina, and Jan Pedersen.
Combating web spam with trustrank. In Proceedings of the
Thirtieth International Conference on Very Large Data Bases
- Volume 30, VLDB ’04, pages 576–587. VLDB Endowment,
2004.

[20] Human Rights Watch. India: 20 internet shutdowns in 2017,
June 2017. https://www.hrw.org/news/2017/06/15/india-
20-internet-shutdowns-2017.

[21] Rob Jansen and Robert Beverly. Toward Delay Tolerant
Network Anonymity: Threshold Pivot Scheme. In Proceed-
ings of the Military Communications Conference (MILCOM
2010), 2010.

[22] Sepandar D. Kamvar, Mario T. Schlosser, and Hector
Garcia-Molina. The eigentrust algorithm for reputation
management in p2p networks. In Proceedings of the 12th
International Conference on World Wide Web, WWW ’03,
pages 640–651, New York, NY, USA, 2003. ACM.

[23] Márton Karsai, Nicola Perra, and Alessandro Vespignani.
Time varying networks and the weakness of strong ties.
Scientific Reports, 4(1), May 2014.

[24] Stevens Le Blond, David Choffnes, William Caldwell, Peter
Druschel, and Nicholas Merritt. Herd: A Scalable, Traffic
Analysis Resistant Anonymity Network for VoIP Systems.
In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, SIGCOMM ’15,
pages 639–652, New York, NY, USA, 2015. ACM.

[25] Stevens Le Blond, David Choffnes, Wenxuan Zhou, Peter
Druschel, Hitesh Ballani, and Paul Francis. Towards efficient
traffic-analysis resistant anonymity networks. In Proceedings
of the ACM SIGCOMM 2013 Conference on SIGCOMM,
SIGCOMM ’13, page 303–314, New York, NY, USA, 2013.
Association for Computing Machinery.

[26] Jeremie Leguay, Timur Friedman, and Vania Conan. Eval-
uating mobility pattern space routing for DTNs. arXiv
preprint cs/0511102, 2005.

[27] Matthew Lentz, Viktor Erdélyi, Paarijaat Aditya, Elaine Shi,
Peter Druschel, and Bobby Bhattacharjee. SDDR: light-
weight, secure mobile encounters. In 23rd USENIX Security
Symposium (USENIX Security 14), pages 925–940, 2014.

[28] Adam Lerner, Giulia Fanti, Yahel Ben-David, Jesus Garcia,
Paul Schmitt, and Barath Raghavan. Rangzen: Anonymously
Getting the Word Out in a Blackout. arXiv:1612.03371 [cs],
December 2016. arXiv: 1612.03371.

[29] Anders Lindgren, Avri Doria, and Olov Schelén. Probabilistic
Routing in Intermittently Connected Networks. In Service
Assurance with Partial and Intermittent Resources, Lecture
Notes in Computer Science, pages 239–254. Springer, Berlin,
Heidelberg, 2004. DOI: 10.1007/978-3-540-27767-5_24.

[30] New Scientist. Earthquake shakes the internet, January
2007. https://www.newscientist.com/article/mg19325852-
300-earthquake-shakes-the-internet/.

[31] New York Times. After a Cyberattack, Germany Fears
Election Disruption, December 2016. https://www.
nytimes.com/2016/12/08/world/europe/germany-russia-
hacking.html?mcubz=3.

[32] Open Garden. Firechat, 2018. https://www.opengarden.
com/firechat/.

https://geti2p.net/en/about/intro
https://geti2p.net/en/about/intro
https://signal.org
https://bridgefy.me/
https://mesh.im/
http://www.africanews.com/2017/06/08/ethiopia-restores-internet-access-after-\shutdown-for-exams/
http://www.africanews.com/2017/06/08/ethiopia-restores-internet-access-after-\shutdown-for-exams/
http://www.africanews.com/2017/06/08/ethiopia-restores-internet-access-after-\shutdown-for-exams/
https://anonymous.4open.science/r/0f48ac77-399c-4ddd-9abe-f28e6782ef4c/
https://anonymous.4open.science/r/0f48ac77-399c-4ddd-9abe-f28e6782ef4c/
https://anonymous.4open.science/r/0f48ac77-399c-4ddd-9abe-f28e6782ef4c/
https://briarproject.org/how-it-works.html
https://briarproject.org/how-it-works.html
https://www.hrw.org/news/2017/06/15/india-20-internet-shutdowns-2017
https://www.hrw.org/news/2017/06/15/india-20-internet-shutdowns-2017
https://www.newscientist.com/article/mg19325852-300-earthquake-shakes-the-internet/
https://www.newscientist.com/article/mg19325852-300-earthquake-shakes-the-internet/
https://www.nytimes.com/2016/12/08/world/europe/germany-russia-hacking.html?mcubz=3
https://www.nytimes.com/2016/12/08/world/europe/germany-russia-hacking.html?mcubz=3
https://www.nytimes.com/2016/12/08/world/europe/germany-russia-hacking.html?mcubz=3
https://www.opengarden.com/firechat/
https://www.opengarden.com/firechat/


Moby 264

[33] Aaron Schulman, Thomas Schmid, Prabal Dutta, and Neil
Spring. Phone power monitoring with battor. In 17th ACM
International Conference on Mobile Computing and Net-
working (MobiCom 2011), 2011.

[34] M Shahzamal, M F Parvez, M A U Zaman, and M D Hos-
sain. Mobility Models for Delay Tolerant Network: A Sur-
vey. International Journal of Wireless & Mobile Networks,
6(4):121–134, August 2014.

[35] C. Song, Z. Qu, N. Blumm, and A.-L. Barabasi. Limits of
Predictability in Human Mobility. Science, 327(5968):1018–
1021, February 2010.

[36] Ewa Syta, Henry Corrigan-Gibbs, Shu-Chun Weng, David
Wolinsky, Bryan Ford, and Aaron Johnson. Security analysis
of accountable anonymity in dissent. ACM Trans. Inf. Syst.
Secur., 17(1), August 2014.

[37] Telegraph. Unprecedented cyber attack takes Liberia’s entire
internet down, November 2016. http://www.telegraph.co.
uk/technology/2016/11/04/unprecedented-cyber-attack-
takes-liberias-\entire-internet-down/.

[38] The Guardian. Iraq shuts down the internet to stop pupils
cheating in exams, May 2016. https://www.theguardian.
com/technology/2016/may/18/iraq-shuts-down-internet-to-
stop-pupils-\cheating-in-exams.

[39] N. Tran, J. Li, L. Subramanian, and S. S. M. Chow. Optimal
Sybil-resilient node admission control. In 2011 Proceedings
IEEE INFOCOM, pages 3218–3226, April 2011.

[40] Trevor Perrin and Moxie Marlinspike. The Double Ratchet
Algorithm, November 2016.

[41] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and
Nickolai Zeldovich. Stadium: A distributed metadata-private
messaging system. In Proceedings of the 26th Symposium
on Operating Systems Principles, SOSP ’17, pages 423–440,
New York, NY, USA, 2017. ACM.

[42] Amin Vahdat, David Becker, et al. Epidemic routing for
partially connected ad hoc networks. 2000.

[43] W. Wei, F. Xu, C. C. Tan, and Q. Li. SybilDefender: A De-
fense Mechanism for Sybil Attacks in Large Social Networks.
IEEE Transactions on Parallel and Distributed Systems,
24(12):2492–2502, December 2013.

[44] Alma Whitten and J Doug Tygar. Why johnny can’t en-
crypt: A usability evaluation of pgp 5.0. In Proceedings of
the 8th USENIX Security Symposium, volume 348, Wash-
ington, D.C., 1999.

[45] WIRED. Protesters adore firechat but it’s still not secure,
2014. http://www.wired.co.uk/article/firechat-app-hong-
kong-protesters.

[46] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao. Sybil-
Limit: A Near-Optimal Social Network Defense Against
Sybil Attacks. IEEE/ACM Transactions on Networking,
18(3):885–898, June 2010.

[47] Haifeng Yu, Michael Kaminsky, Phillip B. Gibbons, and
Abraham D. Flaxman. SybilGuard: Defending Against Sybil
Attacks via Social Networks. IEEE/ACM Trans. Netw.,
16(3):576–589, June 2008.

A Heuristic Proof of Anonymity
Moby provides end-to-end encryption, forward secrecy
and sender-receiver anonymity. To provide these fea-
tures, we begin with a protocol that provides end-to-
end encryption and forward secrecy. In the case of our
implementation, we use the Double Ratchet (DR) algo-
rithm. We make the following modifications to provide
sender-receiver anonymity.
Sender Anonymity: The Moby network is intended
to be deployed as a geographically distributed ad-hoc
wireless network, making a global adversary that can
observe the entire network impractical. Thus, in a net-
work where all senders cannot be observed, a participant
that introduces a message to the network cannot be dis-
tinguished from one that is forwarding it. If a network
observer sees a client that sends out a message, it cannot
tell if this client is the sender or a forwarder. Therefore,
messages are sender anonymous as an adversary cannot
identify who the sender of a given message is.

An attacker could potentially observe TTLs and
try to use them to infer senders. We add noise to the
TTLs in messages to prevent leaking information about
senders.
Receiver Anonymity: Prior to a blackout, Moby
clients establish trust with each other, and as part of
trust establishment they receive cryptographic material
to be used for blackout communications. On performing
encryption with this material, a client produces an en-
crypted payload and an associatedMAC for the payload.
Without knowledge of the key shared between clients,
an adversary cannot decrypt this payload, nor can it
compute the MAC associated with it. Thus, Moby mes-
sages lack information pointing to who the receiver of a
payload is, and provide receiver anonymity.

To further ensure receiver anonymity, receivers of
messages behave in a similar manner to clients that
don’t receive messages, by holding received messages in
their message queues to prevent observers from detect-
ing message reception.
Extensibility: Moby defines its cryptographic compo-
nents in a way that developers can easily modify them
without impacting other aspects of the Moby protocol.
Drop in replacements for DR, with certain modifica-
tions, could be used while still following the protocol
defined by Moby to attain the guarantees it provides in
terms of network communications.

http://www.telegraph.co.uk/technology/2016/11/04/unprecedented-cyber-attack-takes-liberias-\entire-internet-down/
http://www.telegraph.co.uk/technology/2016/11/04/unprecedented-cyber-attack-takes-liberias-\entire-internet-down/
http://www.telegraph.co.uk/technology/2016/11/04/unprecedented-cyber-attack-takes-liberias-\entire-internet-down/
https://www.theguardian.com/technology/2016/may/18/iraq-shuts-down-internet-to-stop-pupils-\cheating-in-exams
https://www.theguardian.com/technology/2016/may/18/iraq-shuts-down-internet-to-stop-pupils-\cheating-in-exams
https://www.theguardian.com/technology/2016/may/18/iraq-shuts-down-internet-to-stop-pupils-\cheating-in-exams
http://www.wired.co.uk/article/firechat-app-hong-kong-protesters
http://www.wired.co.uk/article/firechat-app-hong-kong-protesters


Moby 265

1: procedure ProcessMessageQueue(newMessages)
2: for message in newMessages do
3: for contact in allContacts do
4: MACKey ←MAC key for contact

5: computedMAC ←
HMAC(messageP ayload, MACKey)

6: if computedMAC = messageMAC then
7: New message received

8: else
9: Add message to local queue after update

10: end if
11: end for
12: end for
13: end procedure

Fig. 7. Steps involved in checking if a message received via a
message exchange is meant for a Moby client.

B Receiving a Moby Network
Message

When a client receives a message via the Moby network,
it needs to check if it is the intended destination of that
message. Most messaging systems use destination iden-
tifiers to accomplish this, but Moby messages lack such
information to provide sender anonymity. Thus, clients
follow the algorithm presented in Figure 7. For every
message in the set of new messages, the receiving client
checks every session it shares with its contacts and com-
putes HMAC s using the message payload and eachMAC
Key. If the computed HMAC matches the one attached
to the message, the client knows that the message was
meant for it, and who the sender is, based on the MAC
Key that resulted in the match.

Thus, without attaching identifiers to a Moby mes-
sage, Moby clients can figure out who senders of the
message are, and identify that they were the intended
destination. Although this process is computationally
expensive, it is worth using to attain sender/receiver
anonymity.

C Moby Simulation Parameters
Table 2 summarizes the parameters we use in Moby sim-
ulations.

D Trade-Offs Between Delivery
Ratios and Latencies

Most messaging systems strive for high delivery ratios
and low latency. While the previous paragraphs consid-

5 10 15 20

0.2

0.4

0.6

0.8

1 B

A

TTL: 12
TTL: 72

Average Latency

D
el
iv
er
y
R
at
io

QS 5,000 QS 10,000
QS 15,000 QS 20,000
QS 25,000 QS 30,000

Fig. 8. Scatter plot of average latency versus delivery ratio
for various simulation parameters. Cluster A indicates config-
urations that have the lowest latency (due to low TTLs) and
Cluster B identifies those with reasonably good trade-offs
between latency and delivery ratio.

ered delivery ratios and latencies in isolation, we now
investigate to what extent we can tune Moby to offer
both reasonably high delivery ratios and low latency.

To analyze the effects of varying user queue size and
time to live (TTL) on both delivery ratio and average
message latencies, we plot delivery ratios on the y-axis
and average message latencies on the x-axis in Fig. 8.
We present metrics for simulations with a liveness of
4, all other liveness values resulted in similar trends.
Note that values closer to the top left of the figures are
generally considered better: those result in both higher
deliver ratios and lower latency.

To help with reading the figure, we manually anno-
tated the graph with two clusters and a curve. Starting
with Cluster A, we can clearly identify cases where there
is the lowest latency—but this comes at the cost of low
delivery ratios. Such cases come from simulations using
a TTL of 12, for all queue sizes, 5,000 to 30,000, and
the low latency is easily explained by the low TTL.

Considering Cluster B, we find cases that have rea-
sonably high delivery ratios (>0.8) with latencies near
the middle of the range (15-17.5 hours). These high de-
livery ratios are observed for high queue size simula-
tions: 15,000 (TTL: 36), 20,000 (TTL: 36, 48), 25,000
(TTL: 36 - 72), and 30,000 (TTL: 36 - 72). The common
factors for such performance are relatively large queue
sizes (to increase delivery ratios) with moderately sized



Moby 266

Parameter
Name

Description Values Reasoning

Number of
Days

The total number of days the simulation runs 3 days Captures the functionality of the network

Number of
Messages

The total number of messages sent over the du-
ration of the simulation

30,000 Based on number of messages sent by
users

Cooldown The duration of the simulation (towards the end)
when messages are not sent out

24 hours Longer cooldowns lead to redundant re-
sults

Liveness The minimum number of hours a user needs to
participate in the dataset to be considered in the
simulation

1, 2, 4, 6, 8, 12 Larger values lead to smaller sets of eli-
gible users

Queue Size The size of a message queue for a simulated user 5000, 10000,
15000, 20000,
25000, 30000

Larger queue sizes are capped by the
number of messages sent

Time to Live The amount of time a message is alive in the
simulation

12, 24, 36, 48,
60, 72

Capped by the simulation duration

Number of
DoS Mes-
sages

The number of messages sent by a malicious en-
tity in an hour per cell tower

0, 2, 4, 6, 8, 10 Higher values lead to redundant results

Contacted
Threshold

For a user, the minimum number of times an-
other user needs to be contacted to be consid-
ered part of its contact list

1, 2, 3, 4 Higher values lead to redundant results

Hop Count The maximum number of hops away a user can
be to be considered trusted

0, 1, 2 Higher values means trusting users who
are in general complete strangers

Table 2. Simulation parameters and corresponding values.

TTLs (36 hours or higher for larger queue size) to tame
queue buildup.

We next highlight an interesting trend using the line
linking hollow squares in Fig. 8. This represents TTL
12–72 (increments of 12) for the queue size 5,000. We
notice that keeping a queue size constant, increasing
the TTL first increases delivery ratios and then leads
to a drop in Fig. 3; similarly, varying parameters this
way leads to an increase in average latency and then a
drop in the average latency. The drop in delivery ratio
also results in a drop in average latency as messages get
delivered earlier in the simulation at which point queues
get filled with messages that never get delivered.

E Effect of Exchange Probability
on Delivery Ratios

One of the limitations of our dataset is that we lack
precise geolocation information for users. We, however,
do possess user to tower mappings for when these users
send/receive text messages or call/receive calls. Since
we are unable to model fine-grained proximity between
users at the same tower and use this to estimate the
probability of successful messages exchanges between
users, we instead use a probabilistic approach. Namely,
we uniformly randomly sample a fraction of pairs of

Exchange Probability
TTL 100 50 10 8 4 2 1
12 .7318 .7282 .6193 .5807 .3862 .1281 .134
24 .9421 .9402 .8959 .8762 .7438 .3687 .366
36 .9688 .9678 .9401 .9275 .8417 .5561 .957
48 .9822 .9817 .9655 .9572 .8940 .6521 .1469
60 .9842 .9837 .9693 .9618 .9071 .6881 .195
72 .9847 .9842 .9709 .9638 .9111 .6961 .2062

Table 3. Drop in delivery ratios as Exchange Probability is re-
duced.

users connected to a tower during an hour, and simu-
late the case where only those pairs of users exchange
messages during that hour. We then explore the effects
of varying this random fraction of pairs exchanging mes-
sages on delivery ratios for epidemic routing. We explore
the following percentages: 1, 2, 4, 8, 10, 50, and 100%.

Table 3 shows the drop in delivery ratios as ex-
change probability is reduced, for various TTLs. We
observe a negligible drop in performance from 100% to
50% (under 0.5%) with larger drop as the percentage
is decreased; we see critical drops in performace for ex-
change probabilities under 5%. We observe that higher
TTLs have more resistance to low exchange probabili-
ties, notice that even 8% yields high delivery ratios for
TTLs 36 and higher. These trends are understandable as
fewer message exchanges would naturally lead to poorer
message propagation, which in turn reduces delivery ra-



Moby 267

tios. Whereas higher TTLs allow messages to stay in
circulation longer, that counteracts low exchange proba-
bilities. Interestingly, even at low exchange probabilities
(e.g., 10%), we see that the performance of the network
drops by under 5% for TTL 24 and even lower (under
2%) for higher TTLs. This supports the viability of a
large-scale deployment of Epidemic routing, and thus
Moby.

F PSI-CA Power Consumption
We measure power consumption of our Moby client im-
plementation on two Nexus 5 devices using the Battor
power measurement device. We find that PSI-CA is the
most CPU and power intensive step of the client and
thus measure consumption for different intersection set
sizes. We present results for this in Fig. 9, with PSI
set sizes on the x-axis and the CPU time (left) and
energy consumed (right) are the y-axes. We observe
a clear trend indicating substantially more CPU and
power consumption for larger set sizes, and the con-
sumption scales approximately linearly with set size.
Thus, a way to limit the power consumption of Moby is
to either eliminate PSI-CA entirely, or use reasonably
small set sizes (e.g., pick a subset of 100 contacts as
input).

0
10
0
20
0
30
0
40
0
50
0

0

5

10

15

PSI set size

C
P
U

us
ag
e
tim

e
(s
)

0
10
0
20
0
30
0
40
0
50
0

0

5

10

15

PSI set size

E
ne

rg
y
(J
)

Fig. 9. Evaluation of the CPU/power consumed by the prototype
performing a PSI operation for various PSI set sizes.


	Moby: A Blackout-Resistant Anonymity Network for Mobile Devices
	1 Introduction and Motivation
	2 Goals and Assumptions
	2.1 Goals and Non-Goal
	2.2 Assumptions
	2.3 Threat Model

	3 System Design
	3.1 Trust Establishment Protocol
	3.1.1 Trust in Moby
	3.1.2 Cryptographic Material
	3.1.3 Moby Handshake

	3.2 Moby Network Protocol
	3.2.1 Link Layer Technologies
	3.2.2 Client Discovery
	3.2.3 Sending and Receiving Moby Messages
	3.2.4 Message Exchange
	3.2.5 Post Exchange PSI-CA
	3.2.6 Message Queue Policy
	3.2.7 Moby Data Structures


	4 Security
	4.1 Wide-Area Communication Medium
	4.2 Denial-of-Service (DoS) Attacks
	4.3 Attacking a Moby Message
	4.4 Moby Network User Inference
	4.5 Trust Link Identification
	4.6 Trust Establishment Attack
	4.7 Post Exchange PSI-CA Attacks
	4.8 Out-of-Scope Attacks

	5 Simulation-Based Evaluation
	5.1 Dataset
	5.2 Simulation Framework
	5.3 Experiments Performed
	5.4 Simulation Parameters
	5.5 Performance Results
	5.5.1 Performance in the Absence of an Adversary
	5.5.2 Performance During a Jamming Attack
	5.5.3 Performance During a DoS Attack
	5.5.4 DoS via Compromised Users


	6 Implementation and Evaluation
	6.1 Implementation Details
	6.2 Power Consumption

	7 Discussion
	8 Related Work
	9 Conclusion
	A Heuristic Proof of Anonymity
	B Receiving a Moby Network Message
	C Moby Simulation Parameters
	D Trade-Offs Between Delivery Ratios and Latencies
	E Effect of Exchange Probability on Delivery Ratios
	F PSI-CA Power Consumption


